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J. Phys. A: Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Electromagnetic wave tails in the second approximation to 
the Einstein-Maxwell equationst 

M. A. ROTENBERG$ 
Southwestern At Memphis, Memphis, Tennessee, USA 
MS. received 21st December 1970 

Abstract. With a finite oscillating linear coherent distribution of electric 
charge chosen as the source of electromagnetic radiation, it is shown that the 
outgoing multipole electromagnetic waves of the linear approximation to the 
Einstein-Maxwell equations produce wave tails in the second approximation 
which, after the end of the source vibration, constitute incoming multipole 
waves. 

1. Introduction 
Quite recently considerable attention was given to the properties of wave tails 

in general relativity. In  the case of gravitational waves from an isolated cohesive 
source, wave tails were found by Bonnor and Rotenberg to occur in the second 
approximation to the Einstein gravitational field equationss 

in the form of closed integral expressions (Rotenberg 1964 $ 4.7, Bonnor and Roten- 
berg 1966). Subsequently, Couch et al. (1968), Hunter and Rotenberg (1969) 
established that these wave tails represented an incoming multipole wave field 
imploding at the source. Arising from the mass-multipole interaction, the tails were 
regarded as the result of back-scattering, or partial reflection, of the outgoing multi- 
pole waves (of the linear approximation to (1.1)) by the curvature of the 
Schmarzschild space caused by the mass of the source (Couch et al. 1968). 

il purely gravitational system is not the only type of source that produces a 
curvature of the surrounding space; so does an electromagnetic system. Thus it 
would be expected that electromagnetic multipole waves from a bounded cohesive 
source would, likewise, be partially reflected by the curvature of the external Kord- 
strom space of the source. It is the purpose of the present paper to confirm this by 
showing that there do exist electromagnetic wave tails in the second-order monopole- 
multipole approximation to the empty-space Einstein-Maxwell equations (Eddington 
1924 $$73  and 77)  

R i k  = - 8 ~ E , k  Eki = - FiaFka + $8kiFabF,b 

Fik = h , k - h , t  
(1 *2) Fiaia = 0 

(4i, Fik and E,, being the electromagnetic 4-potentia1, 4 x 4-field and energy tensors, 
respectively), and that the tails do indeed constitute incoming multipole electromag- 
netic radiation. To  avoid excessive calculation, only the monopole and dipole 

t Research partly supported by a National Science Foundation COSIP grant. 
3 Present address : Division of Science, University of Wisconsin-Parkside, Kenosha, 

Wisconsin, USA. 
§ Unless otherwise stated or inferred, a Latin index runs from 1 to 4 and a Greek index 

from 1 to 3 ; the summation convention applies to both indices. A comma subscript denotes 
partial differentiation and a semicolon subscript indicates covariant differentiation. 
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contributions to the multipole wave solution for +{ of the linear approximation to 
(1.2) will be taken into account, and the source of the electromagnetic wave field will 
be chosen as a vibrating linear cohesive distribution of charge of finite length carrying 
negligible mass. 

This electric source is described in more detail in $2 ,  and in $ 3 the corresponding 
(exterior) multipole wave solution for 4% of the linearized Einstein-Maxwell equations 
is derived in Galilean coordinates (x, y ,  x, t).  In  $4 ,  the method of approximation is 
presented, and the Bondi metric is introduced in $ 5 ,  where also the multipole wave 
solution for +i corresponding to this metric is obtained from the one of $ 3 in Galilean 
coordinates. The second approximations to +i and F,,  are calculated in $6 ,  and the 
main result, stated above in connection with wave tails, is deduced therein, This is 
followed by four appendices, which include most of the lengthy calculations. 

2. The electromagnetic source 
We shall choose as the source a linear coherent charge distribution of finite 

extent, having mass density small compared with the charge density, along the axis 
Ox of a (pseudo-Galilean) coordinate system Oxyx, the origin 0 being the centre 
of mass of the distribution?. The  source vibrates arbitrarily but smoothly during a 
finite interval t ,  < t < t,. Thus I(t) ,  the sth moment of charge at time t of the dis- 
tribution about 0, is assumed to be a single-valued arbitrary bounded function with 
unique derivatives of all orders in the interval t ,  < t < t ,  and constant outside this 
interval. 

S 

3. The solution of the linearized Einstein-Maxwell equations 

of the linearized form of the second pair of equations (1.2) or of 
For 4% representing any electromagnetic field, we obtain here the exterior solution 

= 4 r J i  Ftic = $i,, - $k,i (3 .1)  
where Ji is the 4-current density of the sources of the field. We then apply the result 
to the special system of $ 2. 

Equations (3.1) may be written in the form 

gab$l ;ab  f R t a $ ~  = 411.J~ (3 4 

$“ ;a = 0. (3 .3)  

connecting the 4-potential 
dition 

with the 4-current density Ji, provided the gauge con- 

is imposed on +i (Eddington 1924 $ 74). For weak fields, and R k i  are small; thus, 
in Galilean coordinates x i  = (x, y ,  2, t )  = (x,, t ) ,  the linear approximation to (3.2) 
and (3.3) gives the linearized wave and gauge equations 

qab+i,ab = 4rJi qab$a,b  = 
where 

def rik = Ti, = diag(-1, -1, -1, + I ) .  (3.5) 
The multipole wave solution of these equations (3.4), applicable to the general case 

f In the linear approximation to equations (1.2) we shall suppose that distance, time and 
mass retain their Newtonian meanings. 
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in which the sources of the field both emit and absorb radiation, is (Rotenberg 1964 
5 7.2, 1967) 

4' = ~ - l f , + x , ( r - ~ f l , , + r - ~ f , , , )  + terms involving moments of J ,  of order higher 

than the first. (3 4 
def 

In  this, I = (X,X,)~/~ is the radial coordinate of the field point P having spherical 
polar coordinates ( Y ,  8, +) ; with Y being any space volume sufficient to contain the 
sources of the field, the quantities 

Itllur...(t)Ef J x ,pp ,  ... J,(x,, t )  da (de = dx, dx, dx,) (3.7) 
V 

are the moments at time t of the 4-current density J ,  for the sources about the co- 
ordinate planes X, = O, and they must satisfy the conservation law 

qabJamb = 0 (3 *8) 

J = E$(t-Y)+P#(t+Y) J = a$(t-Y)-p#(t+r)  (3.9) 

for Ji; and a prime indicates differentiation with respect to t .  In  addition, the notation 

has been applied to li/,,v.,.: the constants E ,  ,8 in (3.9) are such that x 2 0, > 0, 
u+P = 1, and CI : ,f3 represents the comparative strengths between the outgoing and 
incoming radiation. The solution (3.6) is valid for the external region of the smallest 
sphere, centre 0, that encloses all the sources at all times. 

Let e be the total charge of the distribution and a be a constant with the dimen- 
sions of length, Introduce the specijic moments 

(3.10) 
def -1 - 

h l / , t l L l . . . ~ ,  e a S14ihiAe...a8 

which are unaffected by any change of units in e or a. Then the solution (3.6) yieids 

4, = e { u r - l i ,  + O(a2>) 
(3.11) 

+4 = e{Y-1 i4+aX, (Y -2~; ,~ ,+r -3 j tg , l )  + O(a2)} 

with the notation (3.9) applied to h,,,,, ... and a prime denoting differentiation with 
respect to t. 

For presenting the method of approximation in the next section it is convenient 
t0 employ a new potential function and a new electromagnetic field function defined 
by 

(3.12) dAf def  
K i  - 4 Htk = eF$k = K t , k -  Kk.l 

respectively. Thus (3.1 1) becomes 

where 

(3.14) def 
E = e2. 
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I n  (3.13), the Zs-pole waoe (s = 0,  1, 2, ...) is the coefficient of eaS; only the monopole 
and dipole wave contributions of this multipole wave solution are explicitly shown. 

The conservation equation (3.8) may be written as 

J4 ,4  = J B J .  (3.15) 

Multiplying this by x, and integrating over a space volume V enclosing all the 
sources of the field, we have 

5 1 x,J4 dv = 1 X , J ~ , ~  dv = 1 ( X ~ J ~ ) , ~  dc- 1 J ,  dv. 
dt Y v Y v 

(3.16) 

Since J ,  = 0 on the boundary S of V ,  it follows from Gauss' theorem that the first 
integral on the extreme right of (3.16) vanishes, and so, on account of (3.7) and 
(3.10), h, = -hii,. Moreover, it is evident from the second part of (3.10) and from 
(3.7) that h4 = 1. Hence (3.13) gives 

(3.17) 

The solution (3.13) or (3.17) applies to the region outside the smallest sphere, 
with centre 0, that includes all the sources of the field at all times. As can be verified, 
this multipole wave solution is, therefore, an exterior solution of the linear approxima- 
tion 

7 p K i , a b  = 0 T a b K a , b  = 0 (3.18) 

to (3.2) ( J I  = 0) and (3.3), i.e. to (3.1) (J i  = 0), i.e. to the second pair of the Einstein- 
Maxwell equations (1 2). 

The equivalence of equations (3.1) to equations (3.2) and (3.3) implies that, in 
the notation (3.12) and (3.14), the Einstein-Maxwell equations (1.2) may be cast in 
the form 

Rik = -8rEik E k i  = E - ' (  - Hi"H~,+&GkiHabHab) (3.19) 

(3.19) and (3.20) will henceforth be referred to as the E and Mequations, respectively. 
Corresponding to the special system of § 2 the functions hli,(t), introduced froh 

(3.10) and (3.7), are given by 

h43 = h4/2 = 0 h4,3  = h(t)  (3.21) 

where eah is the first moment I of charge of the source about 0. Thus, for outgoing 
waves ( E  .= 1, ,8 = 0) emitted from this special source, the solution (3.17) yields 

1 
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in which r ,  6' are the first two of the spherical polar coordinates of the field point P, 
h h( t - r )  and a prime denotes differentiation with respect to t - r ? .  

4. The method of approximation 
The multipole wave solution (3.17), for the potential K ~ ,  of the linear approxima- 

tion (3.18) to the M equations (3.20), describes the linearized external electromagnetic 
field of any bounded cohesive electromagnetic source. The  approximate solution 
is linear in E and is also a series in ascending powers of a. These facts suggest that 
the corresponding exact solution of the 144 equations (3.20) for K i  can be expanded 
as a convergent double series in ascending powers of the two parameters E and a. 
This, in turn, suggests that an analogous expansion can be made of the solution of 
the E equations (3.19) for the metric tensor g,k corresponding to K~ and representing 
the external gravitational field of the source. Accordingly we write 

( P S )  ( P S )  0 
I n  these, Ki  and g,k are independent of E and a ;  and gik, independent of E, refers to 
the external gravitational field due only to the mass distribution of the source. As in 
§ 2, let us consider the case in which the mass density of the source is small compared 
with its charge density; then we may ignore the former and the term gik on the right 
of equation (4.2) reduces to gik, the part of gik representing flat space-time. Thus 
equation (4.2) now becomes 

0 

( 0 0 )  

p = :  s = o  

Expansions similar to equations (4.1) and (4.3) clearly apply to K~ and gik .  

the expansions (4.1) and (4.3) produce analogous expansions for Hik and 
with their associate contravariant and mixed tensors). Thus 

By virtue of the second members of equations (3.12) and (3.19) it is evident that 
(together 

(ps) ( p s )  
H i k ,  E i k ,  ... being independent of E and a. 

Let us insert equations (4,1), (4.3) and the second of equations (4.4) in equa- 
tions (3.19) and (3.20), extract the coefficients of EPas from equations (3.19) and 
similarly from equations (3.20), and equate the two sets of coefficients to zero. 
Then we obtain ten second-order differential equations of the form 

(PS) ( P S )  (41') (9s) 
@ l n k i j c  = ylm(giJ0 + constant x Elm (1 < q <p-- l ,O < Y < s) (4.5) 

hereafter referred to as the (ps)  (approximation to the) E equations, and five differential 

t From (3.6), (3.7) and the first part of (3.12), IC$ (i = 1, 2) vanish completely in (3.22) 
because J ,  = 0 (i = 1 ,  2) for this particular source. 
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equations of the form 

( l < < < p - l ,  O < r < s ;  l ~ c G p - 1 ,  O < d < ' )  

hereafter referred to as the (ps) (approximation to the) LU' equations, the first four being 
of the second order and the fifth being of the first order. In  equations ( 4 3 ,  C D l m  on 

(PS) ( P S )  

the left are linear in g,, (and their derivatives); Ylm on the right are non- 
linear in gi, (and their derivatives), known from earlier approximations to 
equations (3.19). In  equations (4.6), (DL and CD on the left are linear in'g'(and 
their derivatives); 'YL and Y on the right consist of nonlinear terms each having 
as factors one of K~ (and their derivatives), known from earlier approximations to 
equations (3.20), and at least one of g,, (and their derivatives), known from earlier 
approximations to equations (3.19). Solving the (ps) field equations (4.5) and (4.6) 

( P S )  ( P S I  (47) ( q r )  thus determines g,, and K ,  in terms of previously calculated g,, and K ~ .  
(PS) ( P S )  ( P S )  

For p = 1, none of the nonlinear expressions Ylm,  Yl, 'Y and the double 
summation expression on the right of equations (4.5) and (4.6) has any terms. Conse- 
quently, for any s 2 0 the set of (Is) hi' equations is linear and homogeneous in K~ 

and their derivatives. The collection of all the sets of (1s) ik? equations (s = 0, 1, 2, ...) 
constitutes the linear approximation to the ik' equations (3.20), namely 
equations (3.18) in Galilean coordinates ; their solutions for Ki ,  in these coordinates, are 
the ZS-pole wave solutions given by the coefficients of cas in the full version of the 
solution (3.13). Accordingly, for any givenp 2 1, the sets of (ps) i%!! equations (s = 0, 
1, 2, ...) will be considered as making up the p th  approximation to the Ii4 equa- 
tions (3.20). Similarly, for any given p 2 l ,  the sets of (ps) E equations (s = 0, l, 
2, ...) will be regarded as constituting thepth approximation to the Eequations (3.19). 

For p 2, the solution of the (ps) iW equations (4.6) is indeterminate to the extent 
of a complementary solution of these equations (4.6), that is, a solution of 

( 4 7 )  

( p s )  ( p s )  

( 4 r )  

( c d )  

(1s) 

(IS) 

Nevertheless, we shall assume that the functions representing the essential sources 
of the K~ wave field have already been chosen for the 2S-pole wave solutions of the 
linear, (Is), JL! equations 

(IS) 
@(Ki ) = 0. 

No new source functions are to be employed other than the ones required to ensure 
the satisfaction of the inhomogeneous equations (4.6) together with the regularity 
conditions outlined in the last paragraph of Appendix 3. In  $6 ,  this rule and the 

(PS) corresponding one for the solution g,, of the (ps) E equations will accordingly be 
adopted; a similar convention was adhered to in previous works for purely gravita- 
tional sources (Bonnor 1959, Rotenberg 1964 5 4.3, 1968, Bonnor and Rotenberg 
1966). 
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The progress of successive approximations to g,, as solutions of the consecutive 
sets of (ps)  E equations depends on the progress of successive approximations to K~ as 
solutions of the consecutive sets of (ps)  hi' equations, and vice versa. This can be 
explained in the following way. Next after the g,, contribution (for flat space-time) 
on the right of equation (4.3) come the gik contributions. These can be calculated 
from equation (4.5) ( p  = 1) only after the K~ contributions have been obtained (by 
the method of 6 3 or directly from equations (4.6) ( p  = 1)) ; this is evident from the 
presence of the E,, term on the right of equation (4.5) ( p  = l), which involves 
(IS) ( 2 s )  ( 1 s )  
K ~ .  The K, ,  coming next after K~ on the right of equation (4,1), cannot be derived 
from equations (4.6) ( p  = 2) until gik, entering Y, and Y, are known. The  g ik ,  im- 
mediately following';; on the right of equation (4.3), cannot be determined from 
equation (4.5) ( p  = 2) until K* as well as K ~ ,  absorbed in E, ,  on the right of 
equation (4.5) ( p  = 2), are known-and so on indefinitely. In  short, K~ are needed 
to know gik, which in turn are needed to know K , ,  which in turn are needed to know 
gik, ... . Thus the problem of solving the successive sets of (ps )  E equations (4.5) 
and that of solving the successive sets of (ps)M equations (4.6) cannot be isolated from 
each other. 

(00) 

(1s) 

(1s) 

( 1 s )  

. ( 1 s )  (2s) (2s) (2s)  

(2s )  ( 1 s )  (2s) 

(18) 

(1s) ( 2 s )  

(2s 1 

5 .  The metric 
For the special axi-symmetric source of 5 2 we shall henceforth employ the follow- 

ing axi-symmetric metric due to Bondi (1960) 

ds2 = -r2(B do2+ Csin2 0 d$2) + D du2 +2F dr  du +2rG dB dzt C = B-l .  ( 5 . 1 )  

I n  this, ( r ,  0, 4) are spherical polar coordinates of the field point P;  the time-like 
coordinate U = retarded time t - r ;  and B, C, D, F, G are dependent on Y, 8, U only. 
I n  accordance with the expansion (4.3), the corresponding non-zero gik will have 
the expansions 

m s c  

-gS3 = r2  sin28 C = y2 sin 
p = l  a - 0  

p = 1  s = o  

p = l  s = o  
(PS) ( P S )  ( p s )  

in which B, ..., G are functions of ( I ,  8, U ) ,  and C ( p ,  s given) is connected with 
B (1 < q < p ,  0 < Y < s) by the second of equations (5.1). The leading terms 

< sr) 
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on the extreme right of equations (5.2) constitute the nonvanishing components of 
gilt, which refer to flat space-time, namely (00) 

(00) 
g14 = 1 (5.3) 

by virtue of equation (A.5) (m = 0) of Appendix 1. 
Carrying out the coordinate transformation 

x = Y sin 6 cos + y = r sin 0 sin + x = Y COS 6 t = u + r  (5.4) 

on equations (3.22) we obtain 

K~ = ~ { ~ - ~ + a c o s 8 r - ~ h + O ( a ~ ) }  
K3 = 0 

K~ = €(a sin 6h’+ O(a2)} 
(5.5) 

~4 = E ( ~ - ~ + u c o s ~ ( I . - ~ ~ ’ + ~ - ~ ~ ) + O ( U ~ ) )  

(where h h(u), h’ 
tion to equations (3.20) in coordinates of the Bondi metric (5,l)T. 

gives K~ as functions of Y, 8, u only and 

#(U)) as the multipole wave solution of the linear approxima- 

We shall assume that, like (5.5), the corresponding exact solution of (3.20) 

K3 = 0. (5.6) 
The remaining K~ will be expanded in the form (4.1) as 

p = l  s = o  

p = l  s = o  

p = l  s- .o 

(PSI where E, ... and a, ... are functions of (Y, 8, U ) .  

Finally, in terms of the retarded time U ,  the period of vibration of the source will 
be denoted by u1 < U < U, .  This corresponds to the original notation t l  < t < t ,  
in $2.  

6. The (21) approximation to the K~ and Hik field. Wave tails 
Putting p = 2, s = 1 in equations (4.6) we have the (21) M equations in the form 

(21) (2;) ( 1 0 )  (11) (10) (11) 
@ ( K i )  = ( K i ,  K i ;  gtk,gtk) 

t An additional sequence of transformations of the form 
tPS)  

x’ = x*i + € p a *  ti (x*) (x’ = 7 , 8 , $ , u ; p  Z 1, s Z 0) 
normally required to ensure that a metric in coordinates (Y, 8, $, U )  satisfies the conditions 
gll = g12 = 0 ,  8 2 2 9 3 3  = y 4  sina 8 of the Bondi metric, would have the effect of introducing 
in the solution ( 5 . 5 )  only nonlinear terms, of order @+las ( p  3 1, s z 0), the K ,  in equa- 
tions ( 5 . 5 )  being of order E. 
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in which the expressions Yl, y? on the right are composed of terms coming from 
the combinations 

( 2 1 )  ( 2 1 )  

(10) (11) (11) (10) 
Ki ‘gtk Ki xgik (6.2) 

(lr) (11) (1s) 
of K, ,  g,, and their derivatives. Now, E,, consist of products of the first derivatives 

(I?) (10) of K (  (0 < Y < s) and, consequently from the right of equations (4.5) ( p  = l), g,, 
depend on K~ and g,, depend on K,: and Ki. I t  therefore follows from the combinations 
(6.2) that the right-hand sides of equations (6.1) are made up of combinations among 
K~ (s = 0, 1) and quantities depending on K~ (s = 0, 1). Accordingly, we speak of 

the (21) M equations (6.1) as consisting entirely of the ‘(lO)-(ll)’ or ‘monopole- 

We now derive formulae for Ki, gtk, Eki ( s  = 0,  I), which occur on the right of 
these (21), monopole-dipole, 171 equations (6.1). The(:;(s = 0, 1) can be obtained 
immediately from equations (5.5); they are 

(10) (11) (10)  (11) 

(1s) (18) 

dipole’ interaction. ( I S )  ( I S )  (1s) 

(10) (10) (10) (10) 
K 1  = Y-’ K 2  = 0 K3 = 0 K~ = r - l  (6.3) 

(11) (11) (11) (11) 
K~ = ~ o s o r - ~ h  K~ = s inoh‘  K~ = 0 K ,  = cosO(r-lh’+r- 2h). (6.4) 

Next we use these in the second of equations (3.12) to calculate H,, (s = 0, l), 
and then Hik  (s = 0, 1) by means of equations (5.3). Inserting the resulting values 
for Hi,, H z k  (s = 0, 1) in the (1s) approximations (s = 0, 1) to the second of 
equations (3.19), we find for the nonvanishing Ehi (s = 0, 1) 

(1s) 

(1s) 

(1s) ( I S ) ,  

(IS) 

5h) 
(11) (11) (11) (11) 
El1 = -E22 = - E S 3  = E,4 = Z ~ o s O ( r - ~ h ’ + r -  

EZ1 = ~ i n B ( r - ~ h ” + ~ - ~ h ’ + ~ -  

E4 - -sin 1 9 ( r - ~ h ” + ~ - ~ h ’ )  E2 - - s i n O ~ - ~ h .  

Finally, the solutions g i ,  of the (Is) approximations to equations (3.19) may be got 
on insertion of equations (A.13) in equations (A.14) to (A.17) (Appendix 2) and em- 
ployment of the ap ropriate formulae for Eki. Corresponding to the values 
(6.5) and (6.6) for Ekt and E,’, the (10) and (11) solutions (Galilean at spatial 
infinity and satisfying the regularity condition (A.18)) turn out to be the following 
nonzero g,k (s = 0,  1): 

(1U2 - 
El - sinBr-eh (6.6) 

(11) 

- w4 - 

(1 S) 

(1s) 

8 0) (11). 

(1s)  

(10) 
g44 = 4 7 w - 2  (6.7) 

(11) (11) 
g,, = +T cos 0 ( 4 ~ - ~ h ’ +  3 ~ - ~ h )  g,, = Qn sin 0 (4~- lh ‘ -3 r -~h) .  (6.8) 

(It will be noticed that the (10) metric (6.7) checks with that obtained from equa- 
tion (A.5), m = 0, with the use of equations (A.2) and (3.14).) 
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We can now proceed with the tedious but straightforward calculation of the (21), 
monopole-dipole, approximation to equations (3.20) with the aid of equations (6.3) 
to (6.8). The  result is equations (A.19) to (A.22), of Appendix 3, with U, V ,  W, 
T on the right given by 

(21)  (21)  (21)  

(21)  

(21) 
V = L3e T sin 0 ( ~ - ~ h ’  + 3r- 7%) ‘E>= 15 n ~ o s 8 ( 1 6 r - ~ h ‘ +  1 5 ~ - ~ h )  

A solution of these equations, satisfying the Galilean condition at spatial infinity and 
the regularity condition (A.25), is found with the help of equations (A.21), (A.23) 
and (A.24) to be 

(21) (21) 
a = -Qncos 8{9r-4h+2(r-1K),}  /3 = QT sin 0 ( - 3r-% + r-lKl) 

(6.10) 
(21) s = $T cos q 4 r  - 3h‘ - r(y - 2 ~ ) ~ )  

where 

~ - ~ h ( u + 2 ~ - 2 w )  dw = - & ~ - ~ h -  ~ ~ h ( u + Z r - Z w )  dw. (6.11) 

The  function K does not become static immediately after the end of the vibration 
of the source (U = u2) and is therefore called a ‘wave tail’. 

The  (21) contributions to the nonvanishing components HZk are, because of 
equations (5.7), (6.10) and the second of equations (3.12) 

I:, K Zf? I r  
a u  m 

(21) (21) 
H12 = - $T sin 6’ Y(Y -IQl H~~ = - +v cos e ( y  - 2 ~ ) ~  

(6.12) 
(21) 
H24 = 371. sin 0 ( 4 ~ - ~ h ‘  + Kll - 2r -  lK1 + 4r -2K) 

which also contain the wave-tail function K?, 
For U 2 u2, equations (6.10) and (6.12) become 

(21) (21) 
= - Q~ cos 8 ~ 9 ~  - 4h + qY - x),) ,8 = $ ~ s i n 8 ( - 3 r - ~ h + ~ - ~ K ~ )  

(6.13) 

and 
121) (21) 
H I 2  = -$T sin 8 ~ ( r - l K ) ~ ~  H~~ = -gvcose(r-2iql  

(6.14) 
(21) 
H2& = &T sin 0 (Kll - 2r -lK1 + 4r - 2 K )  

respectively. As can be verified, the terms inyolving h explicitly on the right of 
equations (6.13) form a solution for the static potential due to the static terms of the 

f I t  was the suggestion of a referee to check that the tails found in the potential K~ imply 
their existence in the field H I ,  as well, as only Hik is observable. The referee mentioned a 
paper by Kiinzle (1968), in which the possibility was demonstrated that the potential alone, 
and not the field, possesses tails. In such cases the tails are of no physical consequence. 
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monopole-dipole interaction, given by equations (A. 19) to (A.22) and (6.9) with 
exclusion of terms containing time derivatives. With regard to the remaining terms 
on the right of equations (6.13) and all the terms on the right of equation (6.14), in- 
volving the tail function K ,  we note that for U > u2 

K1- 2K4 = y-2h' 0 .  (6.15) 

Hence K is a function of u i 2 r  after the end of the vibration of the source. So com- 
paring the contribution containing K on the right of equations (6.13) with the right of 
equations (A.28) of Appendix 4, and comparing equations (6.14) with equations (A.29), 
we arrive at the following result : 

Electromagnetic wave tails appear in the (21) monopole-dipole approximation to the 
Einstein-Maxwell equations which, after the end of the source vibration, represent 
an incoming dipole wave field; this incoming dipole wave corresponds to a source 
similar to the one in 9 2 with first moment $xe3aK about its centre of mass. 

Appendix 1. The Nordstrom-Bondi metric 

distribution of matter and charge, of total mass m and with total charge e, is 
The Nordstrom solution in standard form for a static, spherically symmetric 

dr2 - r2(dP +sin2 0 d+2) + 
where 

clef p = 2rr112e. 

The coordinate transformation 

with 
t = ( U  i 1.) + f ( Y )  Y > 2m 

(A.2) 

(,4.3) 

m = p (A.4) 

2m2 - p2 y - m - (m2 - p2)1/2 

I n  m > P  - p2)lj2 r - m + (m2 - p2)1/2 

brings (A. 1) into the Nordstrom-Bondi metric 

ds2 = -r2(d82+sin2f?d+2)+ (A.5) 

Here, U is essentially the retarded time t - r ;  this is readily seen from (A.3) and the 
fact that f(r) is small. 

Appendix 2. The approximate E equations and their solution 
In  the notation (5.2), the (ps) approximation to equations (3.19) for the Bondi 

metric (5.1) yields the seven equations below, the labels (ps) not appearing above the 
capital letters (as they ought to) to save printing. A subscript 1, 2 or 4 after B, D, 
F o r  G means differentiation with respect to Y, B or U ,  respectively-a notation to apply 
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to any nontensorial symbol, unless the contrary is implied. Finally, RikdZ Rtk+ 8nEtk. 

2R;I = 0: -4?'-'F, = P  

( A 4  
2r-2R42 = 0: B,,-2B,4+2r-1(B1-B4+D1-Fl-G12) 

+ r - y  - B 22 - 3Ba cot 0 + 2B + 2 0  
+ 2F2, - 4 F  - 4G2 - 2G cot 0) = Q  

(A.7) 
2r-2c~sec2BR;,= 0: - B1, + 2 B , , + 2 ~ - ~ (  - B, + B4+D1 - F ,  - G1 cot 0) 

+1.-2(-B 22 - 3B2 cot 0 +2B + 2 0  
+2F2 cot 0-4F-2G2-4Gcot 0) = R  

(4.8) 

2Ri4 = 0:  - Dll+2F,,+2r-1( - D1- D,+2F,+ G24+ G4 cot e)  
+D, cot e)  = s  

(-4.9) 

2r - IRi2  = 0: - G,, + Y -I( - B12 - 2B, cot 0 + F,, - 2G1) 
4 2r-,( - F2 + G) = L  

(-4.10) 

2Ri4 = 0: -Dll +ZF,,+r-l( -20 ,  + G12 + G, cot 0) 
+ rd2(  - F,, - F2 cot 0 + G2 + G cot 0) = M  

(A.11) 
2r-IRi4 = 0 :  - GI1 + GI4 +Y-'( -BS4 -2R4 cot 0 -  D12 

+F,2+F,,-2G,-G4) = A'. 

(A.12) 

The left-hand sides of these equations, linear i$:k (and their derivatives), correspond 
to @lm on the left of equations ( 4 4 ,  and the quantities P, Q, ... , N o n  the right-hand 
sides correspond to the right of equations (4.5) and are known from lower approxima- 
tions to equations (3.19). For p = 1, Y l m  on the right of equations (4.5) vanish and 
only the terms involving E l k  survive there. I n  fact P, Q, ... , N on the right of equa- 
tions (A.6) to (A.12) are given by 

(A.13) 

The formal solution of equations (A.6) to (A.12) has been derived in works by 
Bonnor, Hunter and Rotenberg (Rotenberg 1964 Appendix D-1, 1966, Bonnor and 
Rotenberg 1966, Hunter and Rotenberg 1969). It is given as 

F =  - 4 1  rP dr + r(0, U) (A.14) 
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3 'D dz D1,- 2D14 + 2 ~ - ~ ( 0 ,  + D4) + Y - ~ ( D ~ ~  + D2 cot 8) 
= -S+2(F14+2?~-1F*) 

(A.15) 

G = r - 1 1  F,  dr + r - 1  cmec e i sin e{J y 2 ( i ~ - 2 ~ 1 4 )  dr+r2Dl  +x} d8 

+v(r, U )  cosec 6 (A.16) 

B = cosec28 [sin28[-/{~L+2r-1(F2-G)}du;F2-G-rGl]d6' 

+ T(Y, U )  cosecp 8 + p(8 ,  U )  (A.17) 

where ~ ( 6 ,  U ) ,  ~ ( 8 ,  U ) ,  v(r, U ) ,  T ( Y ,  U), p(8 ,  U )  are five functions of integration. These 
functions must be chosen to render g,, Galilean at spatial infinity, and nonsingular 
along the axis Ox of symmetry except at 0. A sufficient condition for the (ps) metric 
to be regular along Ox (Y > 0) is that 

B cosecp 8, C cosec2 6, D, F,  G cosec 8 be of class C2 near sin 6 = 0. (A.18) 
The solution must be verified to satisfy all the seven equations (4.6) to (A.12)) and it 
may be found that further conditions are imposed by these field equations on the five 
functions of integration. 

(PS) 

Appendix 3. The approximate M equations and their solution 

the following four equations, which employ the notation (5 .7):  
The (ps)  approximation to equations (3.20) for the Bondi metric (5.1) consists of 

x, = 0:  -all+2a14+21.-1(-al$-CCq) 

+ r - 2 ( - ~ 2 2 - ~ 2 ~ ~ t 8 + 2 % + 2 ~ 2 + 2 P ~ ~ t 8 - 2 6 )  = U (,4.19) 

x2 = 0 :  f2,814L21'-1( - p 1 + , 8 4 )  

+ Y - '( - 2~~ - Pza - p2 cot 8 + /3 cosecz 6 + 26,) = V (A.20) 

def 
x4 = 0:  as = 6, , -26 ,~+21. -~(6 , -6 , )+r-~(6 , ,+s2C0t8)= w (-4.21) 
x =LO: qX1 - - 6,) r-2(2% + p z  +p  cot e - 26) = T. (A.22) 

T o  save printing the labels (ps) have been omitted, as in Appendix 2. The left-hand 
sides of equations (A.19) to (A.22), linear in'?: (and their derivatives), correspond to 
(Dl and 0 on the left of equations (4.6); U, V ,  W, Ton  the right of equations (-4.19) 
to (A.22) correspond to the right of equations (4.6), and are determined from earlier 
approximations to (3.20). When p = 1, Lr, V ,  W,  T vanish and then, as can be 
verified, a solution of the above equations is the 2S-pole wave solution, the cas con- 
tribution in the expanded version of (5.5). 

Eliminating /3 between equations (X.19) and (,4.22) we obtain 

xll - - 2 ~ ~ ~ ~ + 4 ~ - l ( t l ,  - x4) +r-'(az2 +a2 cot 0 + 2 4  = 2(~-'6, + r - % )  - U+2T.  
(A.23) 

2.4 
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From equation (A.22) we have 

(Psino), = sinB(r( - a , + m , i 6 1 ) + 2 ( - ~ + 6 ) + r 2 T ) .  (-4.24) 

Thus, knowing 6 from the wave equation (A.21) enables a to be evaluated directly 
from equation (A.23); this, in turn, allows ,R to be readily calculated directly from 
equation (A.24). Accordingly equations (A.21), (A.23) and (A.24) may be regarded as 
constituting the formal solution of the (ps)  Ibf equations (A.19) to (A.22). 

It should be remarked that any solution of equations (A.19) to (A.22), found with 
the aid of equations (A.21), (-4.23) and (A.24), must satisfy all the four equations (A.19) 
to (A.22), the Galilean condition K, = 0 at spatial infinity and the regularity condition 
on the rotation axis Ox, the latter being met if 

CL, ,R cosec 0, 6 are of class C2 near sin 8 = 0. (A.25) 

This must be arranged by assigning appropriate values to the arbitrary functions of 
integration inherent in the solution (A.21), (11.23) and (A.24). 

Appendix 4. The advanced multipole wave solution corresponding to the 

In  Galilean coordinates, the advanced inultipole wave solution of equations (3.18) 
Bondi metric 

for the source of $2 ,  obtained by putting x = 0, ,8 = 1 and (3.21) in (3.17) is 

K1 = K a  = 0 
K4 = €{1.-’ + U COS 8 ( - 1’- ‘h’ + Y-,h) + O(U2)} 

K3 = E { - U Y - ’ h ’ + O ( U 2 ) )  
(A.26) 

h(t+r) and a prime means differentiation with respect to t f r t .  The where h 
coordinate transformation (5.4) brings (A2.6) into 

K1 = €[Y-l+ a cos 8{ - Zr-lh’(u + 2Y) + r-Zh(2.L + 21.)) + O(a2)] 

K~ = €(a sin 0 h’(u + 2 ~ )  + O(a2)) 
K 4  = E[y -1  + a  cos e{ - r-lh’(u + 21.1 + y - 2 h ( u  + z y ) )  + o(a2)l 

which is the advanced multipole wave solution (for the source of 5 2) that corres- 
ponds to the Bondi metric (.5.1)$ The  advanced dipole wave contribution in 
(A.27) is, in the notation (5.7) 

K3 = 0 (A.27) 

(11) (11) (11) 
U = -cosO(r-lh), p = &in8r- lhl  6 = - g c o ~ e r ( r - ~ h ) ,  (A.28) 

in which h = h(u+Zr). From the second part of (3.12) and (A.27), the incoming 
dipole wave contribution to the nonzero components of the field tensor are 
readily found to be 

with h h ( u i - 2 ~ ) .  

applies to equations (A.26). 

equations (5 .5)  is relevant to equations (A.27). 

t A remark similar to that made in the footnote on page 621 concerning equations (3.22) 

$ A comment analogous to that given in the footnote on page 624 in connection with 
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